Consul
ACL System in Legacy Mode
1.3.0 and earlier: This document only applies in Consul versions 1.3.0 and before. If you are using version 1.4.0 or later please use the updated documentation here.
Alert: Deprecation Notice The ACL system described here was Consul's original ACL implementation. The legacy ACL system was deprecated in Consul 1.4.0 and removed in Consul 1.11.0. The documentation for the new ACL system can be found here. For information on how to migrate to the new ACL System, please read the Migrate Legacy ACL Tokens tutorial.
The legacy documentation has two sections.
- The New ACL System Differences section details the differences between ACLs in Consul 1.4.0 and older versions. You should read this section before upgrading to Consul 1.4.0 and migrating tokens.
- The Legacy ACL System documentation section details the ACL system in Consul 1.3.0 and older.
New ACL System Differences
The ACL System documentation and legacy ACL documentation describes the new and old systems in detail. Below is a summary of the changes that need to be considered when migrating legacy tokens to the new system.
Token and Policy Separation
You can use a single policy in the new system for all tokens that share access rules. For example, all tokens created using the clone endpoint in the legacy system can be represented with a single policy and a set of tokens that map to that policy.
Rule Syntax Changes
The most significant change is that rules with selectors no longer prefix match by default. In the legacy system the following rules would grant access to nodes, services and keys prefixed with foo.
node "foo" { policy = "write" }
service "foo" { policy = "write" }
key "foo" { policy = "write" }
In the new system the same syntax will only perform exact match on the whole node name, service name or key.
In general, exact match is what most operators intended most of the time so the same policy can be kept, however if you rely on prefix match behavior then using the same syntax will break behavior.
Prefix matching can be expressed in the new ACL system explicitly, making the following rules in the new system exactly the same as the rules above in the old.
node_prefix "foo" { policy = "write" }
service_prefix "foo" { policy = "write" }
key_prefix "foo" { policy = "write" }
API Separation
The "old" API endpoints below continue to work for backwards compatibility but will continue to create or show only "legacy" tokens that can't take full advantage of the new ACL system improvements. They are documented fully under Legacy Tokens.
PUT /acl/create
- Create Legacy TokenPUT /acl/update
- Update Legacy TokenPUT /acl/destroy/:uuid
- Delete Legacy TokenGET /acl/info/:uuid
- Read Legacy TokenPUT /acl/clone/:uuid
- Clone Legacy TokenGET /acl/list
- List Legacy Tokens
The new ACL system includes new API endpoints to manage the ACL System, Tokens and Policies.
Legacy ACL System
Warning: In this document we use the deprecated
configuration parameter acl_datacenter
. In Consul 1.4 and newer the
parameter has been updated to primary_datacenter
.
Consul provides an optional Access Control List (ACL) system which can be used to control access to data and APIs. The ACL is Capability-based, relying on tokens to which fine grained rules can be applied. It is very similar to AWS IAM in many ways.
ACL System Overview
The ACL system is designed to be easy to use, fast to enforce, and flexible to new policies, all while providing administrative insight.
ACL Tokens
The ACL system is based on tokens, which are managed by Consul operators via Consul's ACL API, or systems like HashiCorp's Vault.
Every token has an ID, name, type, and rule set. The ID is a randomly generated UUID, making it infeasible to guess. The name is opaque to Consul and human readable. The type is either "client" (meaning the token cannot modify ACL rules) or "management" (meaning the token is allowed to perform all actions).
The token ID is passed along with each RPC request to the servers. Consul's
HTTP endpoints can accept tokens via the token
query string parameter, or the X-Consul-Token
request header, or Authorization Bearer
token RFC6750. Consul's
CLI commands can accept tokens via the
token
argument, or the CONSUL_HTTP_TOKEN
environment variable.
If no token is provided, the rules associated with a special, configurable anonymous
token are automatically applied. The anonymous token is managed using the
ACL API like any other ACL token, but using anonymous
for the ID.
ACL Rules and Scope
Tokens are bound to a set of rules that control which Consul resources the token
has access to. Policies can be defined in either an allowlist or denylist mode
depending on the configuration of
acl_default_policy
. If the default
policy is to "deny" all actions, then token rules can be set to allowlist specific
actions. In the inverse, the "allow" all default behavior is a denylist where rules
are used to prohibit actions. By default, Consul will allow all actions.
The following table summarizes the ACL policies that are available for constructing rules:
Policy | Scope |
---|---|
agent | Utility operations in the Agent API, other than service and check registration |
event | Listing and firing events in the Event API |
key | Key/value store operations in the KV Store API |
keyring | Keyring operations in the Keyring API |
node | Node-level catalog operations in the Catalog API, Health API, Prepared Query API, Network Coordinate API, and Agent API |
operator | Cluster-level operations in the Operator API, other than the Keyring API |
query | Prepared query operations in the Prepared Query API |
service | Service-level catalog operations in the Catalog API, Health API, Prepared Query API, and Agent API |
session | Session operations in the Session API |
Since Consul snapshots actually contain ACL tokens, the Snapshot API requires a management token for snapshot operations and does not use a special policy.
The following resources are not covered by ACL policies:
The Status API is used by servers when bootstrapping and exposes basic IP and port information about the servers, and does not allow modification of any state.
The datacenter listing operation of the Catalog API similarly exposes the names of known Consul datacenters, and does not allow modification of any state.
Constructing rules from these policies is covered in detail in the Rule Specification section below.
ACL Datacenter
All nodes (clients and servers) must be configured with a
acl_datacenter
which enables ACL
enforcement but also specifies the authoritative datacenter. Consul relies on
RPC forwarding to support multi-datacenter
configurations. However, because requests can be made across datacenter boundaries,
ACL tokens must be valid globally. To avoid consistency issues, a single datacenter
is considered authoritative and stores the canonical set of tokens.
When a request is made to an agent in a non-authoritative datacenter, it must be
resolved into the appropriate policy. This is done by reading the token from the
authoritative server and caching the result for a configurable
acl_ttl
. The implication of caching is that
the cache TTL is an upper bound on the staleness of policy that is enforced. It is
possible to set a zero TTL, but this has adverse performance impacts, as every
request requires refreshing the policy via an RPC call.
During an outage of the ACL datacenter, or loss of connectivity, the cache will be
used as long as the TTL is valid, or the cache may be extended if the
acl_down_policy
is set accordingly.
This configuration also allows the ACL system to fail open or closed.
ACL replication is also available to allow for the full set of ACL
tokens to be replicated for use during an outage.
Configuring ACLs
ACLs are configured using several different configuration options. These are marked as to whether they are set on servers, clients, or both.
Configuration Option | Servers | Clients | Purpose |
---|---|---|---|
acl_datacenter | REQUIRED | REQUIRED | Master control that enables ACLs by defining the authoritative Consul datacenter for ACLs |
acl_default_policy | OPTIONAL | N/A | Determines allowlist or denylist mode |
acl_down_policy | OPTIONAL | OPTIONAL | Determines what to do when the ACL datacenter is offline |
acl_ttl | OPTIONAL | OPTIONAL | Determines time-to-live for cached ACLs |
There are some additional configuration items related to ACL replication and Version 8 ACL support. These are discussed in those respective sections below.
A number of special tokens can also be configured which allow for bootstrapping the ACL system, or accessing Consul in special situations:
Special Token | Servers | Clients | Purpose |
---|---|---|---|
acl_agent_master_token | OPTIONAL | OPTIONAL | Special token that can be used to access Agent API when the ACL datacenter isn't available, or servers are offline (for clients); used for setting up the cluster such as doing initial join operations, see the ACL Agent Master Token section for more details |
acl_agent_token | OPTIONAL | OPTIONAL | Special token that is used for an agent's internal operations, see the ACL Agent Token section for more details |
acl_master_token | REQUIRED | N/A | Special token used to bootstrap the ACL system, see the Bootstrapping ACLs section for more details |
acl_token | OPTIONAL | OPTIONAL | Default token to use for client requests where no token is supplied; this is often configured with read-only access to services to enable DNS service discovery on agents |
In Consul 0.9.1 and later, the agent ACL tokens can be introduced or updated via the /v1/agent/token API.
ACL Agent Master Token
Since the acl_agent_master_token
is designed to be used when the Consul servers are not available, its policy is managed locally on the agent and does not need to have a token defined on the Consul servers via the ACL API. Once set, it implicitly has the following policy associated with it (the node
policy was added in Consul 0.9.0):
agent "<node name of agent>" {
policy = "write"
}
node "" {
policy = "read"
}
In Consul 0.9.1 and later, the agent ACL tokens can be introduced or updated via the /v1/agent/token API.
ACL Agent Token
The acl_agent_token
is a special token that is used for an agent's internal operations. It isn't used directly for any user-initiated operations like the acl_token
, though if the acl_agent_token
isn't configured the acl_token
will be used. The ACL agent token is used for the following operations by the agent:
- Updating the agent's node entry using the Catalog API, including updating its node metadata, tagged addresses, and network coordinates
- Performing anti-entropy syncing, in particular reading the node metadata and services registered with the catalog
- Reading and writing the special
_rexec
section of the KV store when executingconsul exec
commands
Here's an example policy sufficient to accomplish the above for a node called mynode
:
node "mynode" {
policy = "write"
}
service "" {
policy = "read"
}
key "_rexec" {
policy = "write"
}
The service
policy needs read
access for any services that can be registered on the agent. If remote exec is disabled, the default, then the key
policy can be omitted.
In Consul 0.9.1 and later, the agent ACL tokens can be introduced or updated via the /v1/agent/token API.
Bootstrapping ACLs
Bootstrapping ACLs on a new cluster requires a few steps, outlined in the examples in this section.
Enable ACLs on the Consul Servers
The first step for bootstrapping ACLs is to enable ACLs on the Consul servers in the ACL datacenter. In this example, we are configuring the following:
- An ACL datacenter of "dc1", which is where these servers are
- An ACL master token of "b1gs33cr3t"; see below for an alternative using the /v1/acl/bootstrap API
- A default policy of "deny" which means we are in allowlist mode
- A down policy of "extend-cache" which means that we will ignore token TTLs during an outage
Here's the corresponding JSON configuration file:
{
"acl_datacenter": "dc1",
"acl_master_token": "b1gs33cr3t",
"acl_default_policy": "deny",
"acl_down_policy": "extend-cache"
}
The servers will need to be restarted to load the new configuration. Please take care to start the servers one at a time, and ensure each server has joined and is operating correctly before starting another.
The acl_master_token
will be created
as a "management" type token automatically. The
acl_master_token
is only installed when
a server acquires cluster leadership. If you would like to install or change the
acl_master_token
, set the new value for
acl_master_token
in the configuration
for all servers. Once this is done, restart the current leader to force a leader election.
In Consul 0.9.1 and later, you can use the /v1/acl/bootstrap API
to make the initial master token, so a token never needs to be placed into a configuration
file. To use this approach, omit acl_master_token
from the above config and then call the API:
$ curl \
--request PUT \
http://127.0.0.1:8500/v1/acl/bootstrap
{"ID":"fe3b8d40-0ee0-8783-6cc2-ab1aa9bb16c1"}
The returned token is the initial management token, which is randomly generated by Consul. It's only possible to bootstrap one time, and bootstrapping will be disabled if a master token was configured and created.
Once the ACL system is bootstrapped, ACL tokens can be managed through the ACL API.
Create an Agent Token
After the servers are restarted above, you will see new errors in the logs of the Consul servers related to permission denied errors:
2017/07/08 23:38:24 [WARN] agent: Node info update blocked by ACLs
2017/07/08 23:38:44 [WARN] agent: Coordinate update blocked by ACLs
These errors are because the agent doesn't yet have a properly configured
acl_agent_token
that it can use for its
own internal operations like updating its node information in the catalog and performing
anti-entropy syncing. We can create a token using the
ACL API, and the ACL master token we set in the previous step:
$ curl \
--request PUT \
--header "X-Consul-Token: b1gs33cr3t" \
--data \
'{
"Name": "Agent Token",
"Type": "client",
"Rules": "node \"\" { policy = \"write\" } service \"\" { policy = \"read\" }"
}' http://127.0.0.1:8500/v1/acl/create
{"ID":"fe3b8d40-0ee0-8783-6cc2-ab1aa9bb16c1"}
The returned value is the newly-created token. We can now add this to our Consul server configuration and restart the servers once more to apply it:
{
"acl_datacenter": "dc1",
"acl_master_token": "b1gs33cr3t",
"acl_default_policy": "deny",
"acl_down_policy": "extend-cache",
"acl_agent_token": "fe3b8d40-0ee0-8783-6cc2-ab1aa9bb16c1"
}
In Consul 0.9.1 and later you can also introduce the agent token using an API, so it doesn't need to be set in the configuration file:
$ curl \
--request PUT \
--header "X-Consul-Token: b1gs33cr3t" \
--data \
'{
"Token": "fe3b8d40-0ee0-8783-6cc2-ab1aa9bb16c1"
}' http://127.0.0.1:8500/v1/agent/token/acl_agent_token
With that ACL agent token set, the servers will be able to sync themselves with the catalog:
2017/07/08 23:42:59 [INFO] agent: Synced node info
See the ACL Agent Token section for more details.
Enable ACLs on the Consul Clients
Since ACL enforcement also occurs on the Consul clients, we need to also restart them with a configuration file that enables ACLs:
{
"acl_datacenter": "dc1",
"acl_down_policy": "extend-cache",
"acl_agent_token": "fe3b8d40-0ee0-8783-6cc2-ab1aa9bb16c1"
}
Similar to the previous example, in Consul 0.9.1 and later you can also introduce the agent token using an API, so it doesn't need to be set in the configuration file:
$ curl \
--request PUT \
--header "X-Consul-Token: b1gs33cr3t" \
--data \
'{
"Token": "fe3b8d40-0ee0-8783-6cc2-ab1aa9bb16c1"
}' http://127.0.0.1:8500/v1/agent/token/acl_agent_token
We used the same ACL agent token that we created for the servers, which will work since
it was not specific to any node or set of service prefixes. In a more locked-down
environment it is recommended that each client get an ACL agent token with node
write
privileges for just its own node name prefix, and service
read privileges for just the
service prefixes expected to be registered on that client.
Anti-entropy syncing requires the ACL agent token
to have service
read privileges for all services that may be registered with the agent,
so generally an empty service
prefix can be used, as shown in the example.
Clients will report similar permission denied errors until they are restarted with an ACL agent token.
Set an Anonymous Policy (Optional)
At this point ACLs are bootstrapped with ACL agent tokens configured, but there are no
other policies set up. Even basic operations like consul members
will be restricted
by the ACL default policy of "deny":
$ consul members
We don't get an error since the ACL has filtered what we see, and we aren't allowed to see any nodes by default.
If we supply the token we created above we will be able to see a listing of nodes because
it has write privileges to an empty node
prefix, meaning it has access to all nodes:
$ CONSUL_HTTP_TOKEN=fe3b8d40-0ee0-8783-6cc2-ab1aa9bb16c1 consul members
Node Address Status Type Build Protocol DC
node-1 127.0.0.1:8301 alive server 0.9.0dev 2 dc1
node-2 127.0.0.2:8301 alive client 0.9.0dev 2 dc1
It's pretty common in many environments to allow listing of all nodes, even without a
token. The policies associated with the special anonymous token can be updated to
configure Consul's behavior when no token is supplied. The anonymous token is managed
like any other ACL token, except that anonymous
is used for the ID. In this example
we will give the anonymous token read privileges for all nodes:
$ curl \
--request PUT \
--header "X-Consul-Token: b1gs33cr3t" \
--data \
'{
"ID": "anonymous",
"Type": "client",
"Rules": "node \"\" { policy = \"read\" }"
}' http://127.0.0.1:8500/v1/acl/update
{"ID":"anonymous"}
The anonymous token is implicitly used if no token is supplied, so now we can run
consul members
without supplying a token and we will be able to see the nodes:
$ consul members
Node Address Status Type Build Protocol DC
node-1 127.0.0.1:8301 alive server 0.9.0dev 2 dc1
node-2 127.0.0.2:8301 alive client 0.9.0dev 2 dc1
The anonymous token is also used for DNS lookups since there's no way to pass a token as part of a DNS request. Here's an example lookup for the "consul" service:
$ dig @127.0.0.1 -p 8600 consul.service.consul
; <<>> DiG 9.8.3-P1 <<>> @127.0.0.1 -p 8600 consul.service.consul
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 9648
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0
;; WARNING: recursion requested but not available
;; QUESTION SECTION:
;consul.service.consul. IN A
;; AUTHORITY SECTION:
consul. 0 IN SOA ns.consul. postmaster.consul. 1499584110 3600 600 86400 0
;; Query time: 2 msec
;; SERVER: 127.0.0.1#8600(127.0.0.1)
;; WHEN: Sun Jul 9 00:08:30 2017
;; MSG SIZE rcvd: 89
Now we get an NXDOMAIN
error because the anonymous token doesn't have access to the
"consul" service. Let's add that to the anonymous token's policy:
$ curl \
--request PUT \
--header "X-Consul-Token: b1gs33cr3t" \
--data \
'{
"ID": "anonymous",
"Type": "client",
"Rules": "node \"\" { policy = \"read\" } service \"consul\" { policy = \"read\" }"
}' http://127.0.0.1:8500/v1/acl/update
{"ID":"anonymous"}
With that new policy in place, the DNS lookup will succeed:
$ dig @127.0.0.1 -p 8600 consul.service.consul
; <<>> DiG 9.8.3-P1 <<>> @127.0.0.1 -p 8600 consul.service.consul
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 46006
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; WARNING: recursion requested but not available
;; QUESTION SECTION:
;consul.service.consul. IN A
;; ANSWER SECTION:
consul.service.consul. 0 IN A 127.0.0.1
;; Query time: 0 msec
;; SERVER: 127.0.0.1#8600(127.0.0.1)
;; WHEN: Sun Jul 9 00:11:14 2017
;; MSG SIZE rcvd: 55
The next section shows an alternative to the anonymous token.
Set Agent-Specific Default Tokens (Optional)
An alternative to the anonymous token is the acl_token
configuration item. When a request is made to a particular Consul agent and no token is
supplied, the acl_token
will be used for the token,
instead of being left empty which would normally invoke the anonymous token.
In Consul 0.9.1 and later, the agent ACL tokens can be introduced or updated via the /v1/agent/token API.
This behaves very similarly to the anonymous token, but can be configured differently on each agent, if desired. For example, this allows more fine grained control of what DNS requests a given agent can service, or can give the agent read access to some key-value store prefixes by default.
If using acl_token
, then it's likely the anonymous
token will have a more restrictive policy than shown in the examples here.
Create Tokens for UI Use (Optional)
If you utilize the Consul UI with a restrictive ACL policy, as above, the UI will not function fully using the anonymous ACL token. It is recommended that a UI-specific ACL token is used, which can be set in the UI during the web browser session to authenticate the interface.
$ curl \
--request PUT \
--header "X-Consul-Token: b1gs33cr3t" \
--data \
'{
"Name": "UI Token",
"Type": "client",
"Rules": "key \"\" { policy = \"write\" } node \"\" { policy = \"read\" } service \"\" { policy = \"read\" }"
}' http://127.0.0.1:8500/v1/acl/create
{"ID":"d0a9f330-2f9d-0a8c-d2af-1e9ceda354e6"}
The token can then be set on the "settings" page of the UI.
Next Steps
The examples above configure a basic ACL environment with the ability to see all nodes by default, and limited access to just the "consul" service. The ACL API can be used to create tokens for applications specific to their intended use, and to create more specific ACL agent tokens for each agent's expected role.
Also see HashiCorp's Vault, which has an integration with Consul that allows it to generate ACL tokens on the fly and to manage their lifetimes.
Rule Specification
A core part of the ACL system is the rule language which is used to describe the policy that must be enforced. Most of the ACL rules are prefix-based, allowing operators to define different namespaces within Consul's resource areas like the catalog and key/value store, in order to delegate responsibility for these namespaces. Policies can have several dispositions:
read
: allow the resource to be read but not modifiedwrite
: allow the resource to be read and modifieddeny
: do not allow the resource to be read or modified
With prefix-based rules, the most specific prefix match determines the action. This allows for flexible rules like an empty prefix to allow read-only access to all resources, along with some specific prefixes that allow write access or that are denied all access.
We make use of the HashiCorp Configuration Language (HCL) to specify rules. This language is human readable and interoperable with JSON making it easy to machine-generate. Rules can make use of one or more policies.
Specification in the HCL format looks like:
# These control access to the key/value store.
key "" {
policy = "read"
}
key "foo/" {
policy = "write"
}
key "foo/private/" {
policy = "deny"
}
# This controls access to cluster-wide Consul operator information.
operator = "read"
This is equivalent to the following JSON input:
{
"key": {
"": {
"policy": "read"
},
"foo/": {
"policy": "write"
},
"foo/private/": {
"policy": "deny"
}
},
"operator": "read"
}
The ACL API allows either HCL or JSON to be used to define the content of the rules section.
Here's a sample request using the HCL form:
$ curl \
--request PUT \
--data \
'{
"Name": "my-app-token",
"Type": "client",
"Rules": "key \"\" { policy = \"read\" } key \"foo/\" { policy = \"write\" } key \"foo/private/\" { policy = \"deny\" } operator = \"read\""
}' http://127.0.0.1:8500/v1/acl/create?token=<management token>
Here's an equivalent request using the JSON form:
$ curl \
--request PUT \
--data \
'{
"Name": "my-app-token",
"Type": "client",
"Rules": "{\"key\":{\"\":{\"policy\":\"read\"},\"foo/\":{\"policy\":\"write\"},\"foo/private\":{\"policy\":\"deny\"}},\"operator\":\"read\"}"
}' http://127.0.0.1:8500/v1/acl/create?token=<management token>
On success, the token ID is returned:
{
"ID": "adf4238a-882b-9ddc-4a9d-5b6758e4159e"
}
This token ID can then be passed into Consul's HTTP APIs via the token
query string parameter, or the X-Consul-Token
request header, or Authorization
Bearer token header, or Consul's CLI commands via the token
argument,
or the CONSUL_HTTP_TOKEN
environment variable.
Agent Rules
The agent
policy controls access to the utility operations in the Agent API,
such as join and leave. All of the catalog-related operations are covered by the node
and service
policies instead.
Agent rules look like this:
agent "" {
policy = "read"
}
agent "foo" {
policy = "write"
}
agent "bar" {
policy = "deny"
}
Agent rules are keyed by the node name prefix they apply to, using the longest prefix match rule. In the example above, the rules allow read-only access to any node name with the empty prefix, allow read-write access to any node name that starts with "foo", and deny all access to any node name that starts with "bar".
Since Agent API utility operations may be required before an agent is joined to
a cluster, or during an outage of the Consul servers or ACL datacenter, a special token may be
configured with acl_agent_master_token
to allow
write access to these operations even if no ACL resolution capability is available.
Event Rules
The event
policy controls access to event operations in the Event API, such as
firing events and listing events.
Event rules look like this:
event "" {
policy = "read"
}
event "deploy" {
policy = "write"
}
Event rules are keyed by the event name prefix they apply to, using the longest prefix match rule. In the example above, the rules allow read-only access to any event, and firing of any event that starts with "deploy".
The consul exec
command uses events with the "_rexec" prefix during
operation, so to enable this feature in a Consul environment with ACLs enabled, you will need to
give agents a token with access to this event prefix, in addition to configuring
disable_remote_exec
to false
.
Key/Value Rules
The key
policy controls access to key/value store operations in the KV API. Key
rules look like this:
key "" {
policy = "read"
}
key "foo" {
policy = "write"
}
key "bar" {
policy = "deny"
}
Key rules are keyed by the key name prefix they apply to, using the longest prefix match rule. In the example above, the rules allow read-only access to any key name with the empty prefix, allow read-write access to any key name that starts with "foo", and deny all access to any key name that starts with "bar".
List Policy for Keys
Consul 1.0 introduces a new list
policy for keys that is only enforced when opted in via the boolean config param "acl_enable_key_list_policy".
list
controls access to recursively list entries and keys, and enables more fine grained policies. With "acl_enable_key_list_policy",
recursive reads via the KV API with an invalid token result in a 403. Example:
key "" {
policy = "deny"
}
key "bar" {
policy = "list"
}
key "baz" {
policy = "read"
}
In the example above, the rules allow reading the key "baz", and only allow recursive reads on the prefix "bar".
A token with write
access on a prefix also has list
access. A token with list
access on a prefix also has read
access on all its suffixes.
Sentinel Integration Enterprise
Consul Enterprise supports additional optional fields for key write policies for Sentinel integration. An example key rule with a Sentinel code policy looks like this:
key "foo" {
policy = "write"
sentinel {
code = <<EOF
import "strings"
main = rule { strings.has_suffix(value, "bar") }
EOF
enforcementlevel = "hard-mandatory"
}
}
For more detailed information, see the Consul Sentinel documentation.
Keyring Rules
The keyring
policy controls access to keyring operations in the
Keyring API.
Keyring rules look like this:
keyring = "write"
There's only one keyring policy allowed per rule set, and its value is set to one of the policy dispositions. In the example above, the keyring may be read and updated.
Node Rules
The node
policy controls node-level registration and read access to the Catalog API,
service discovery with the Health API, and filters results in Agent API
operations like fetching the list of cluster members.
Node rules look like this:
node "" {
policy = "read"
}
node "app" {
policy = "write"
}
node "admin" {
policy = "deny"
}
Node rules are keyed by the node name prefix they apply to, using the longest prefix match rule. In the example above, the rules allow read-only access to any node name with the empty prefix, allow read-write access to any node name that starts with "app", and deny all access to any node name that starts with "admin".
Agents need to be configured with an acl_agent_token
with at least "write" privileges to their own node name in order to register their information with
the catalog, such as node metadata and tagged addresses. If this is configured incorrectly, the agent
will print an error to the console when it tries to sync its state with the catalog.
Consul's DNS interface is also affected by restrictions on node rules. If the
acl_token
used by the agent does not have "read" access to a
given node, then the DNS interface will return no records when queried for it.
When reading from the catalog or retrieving information from the health endpoints, node rules are used to filter the results of the query. This allows for configurations where a token has access to a given service name, but only on an allowed subset of node names.
Node rules come into play when using the Agent API to register node-level checks. The agent will check tokens locally as a check is registered, and Consul also performs periodic anti-entropy syncs, which may require an ACL token to complete. To accommodate this, Consul provides two methods of configuring ACL tokens to use for registration events:
- Using the acl_token configuration directive. This allows a single token to be configured globally and used during all check registration operations.
- Providing an ACL token with service and check definitions at registration time. This allows for greater flexibility and enables the use of multiple tokens on the same agent. Examples of what this looks like are available for both services and checks. Tokens may also be passed to the HTTP API for operations that require them.
In addition to ACLs, in Consul 0.9.0 and later, the agent must be configured with
enable_script_checks
set to true
in order to enable
script checks.
Operator Rules
The operator
policy controls access to cluster-level operations in the
Operator API, other than the Keyring API.
Operator rules look like this:
operator = "read"
There's only one operator policy allowed per rule set, and its value is set to one of the policy dispositions. In the example above, the token could be used to query the operator endpoints for diagnostic purposes but not make any changes.
Prepared Query Rules
The query
policy controls access to create, update, and delete prepared queries in the
Prepared Query API. Executing queries is subject to node
and service
policies, as will be explained below.
Query rules look like this:
query "" {
policy = "read"
}
query "foo" {
policy = "write"
}
Query rules are keyed by the query name prefix they apply to, using the longest prefix match rule. In the example above, the rules allow read-only access to any query name with the empty prefix, and allow read-write access to any query name that starts with "foo". This allows control of the query namespace to be delegated based on ACLs.
There are a few variations when using ACLs with prepared queries, each of which uses ACLs in one of two ways: open, protected by unguessable IDs or closed, managed by ACL policies. These variations are covered here, with examples:
Static queries with no
Name
defined are not controlled by any ACL policies. These types of queries are meant to be ephemeral and not shared to untrusted clients, and they are only reachable if the prepared query ID is known. Since these IDs are generated using the same random ID scheme as ACL Tokens, it is infeasible to guess them. When listing all prepared queries, only a management token will be able to see these types, though clients can read instances for which they have an ID. An example use for this type is a query built by a startup script, tied to a session, and written to a configuration file for a process to use via DNS.Static queries with a
Name
defined are controlled by thequery
ACL policy. Clients are required to have an ACL token with a prefix sufficient to cover the name they are trying to manage, with a longest prefix match providing a way to define more specific policies. Clients can list or read queries for which they have "read" access based on their prefix, and similar they can update any queries for which they have "write" access. An example use for this type is a query with a well-known name (eg.prod-primary-customer-db
) that is used and known by many clients to provide geo-failover behavior for a database.Template queries queries work like static queries with a
Name
defined, except that a catch-all template with an emptyName
requires an ACL token that can write to any query prefix.
When prepared queries are executed via DNS lookups or HTTP requests, the ACL checks are run against the service being queried, similar to how ACLs work with other service lookups. There are several ways the ACL token is selected for this check:
If an ACL Token was captured when the prepared query was defined, it will be used to perform the service lookup. This allows queries to be executed by clients with lesser or even no ACL Token, so this should be used with care.
If no ACL Token was captured, then the client's ACL Token will be used to perform the service lookup.
If no ACL Token was captured and the client has no ACL Token, then the anonymous token will be used to perform the service lookup.
In the common case, the ACL Token of the invoker is used
to test the ability to look up a service. If a Token
was specified when the
prepared query was created, the behavior changes and now the captured
ACL Token set by the definer of the query is used when looking up a service.
Capturing ACL Tokens is analogous to
PostgreSQL's
SECURITY DEFINER
attribute which can be set on functions, and using the client's ACL
Token is similar to the complementary SECURITY INVOKER
attribute.
Prepared queries were originally introduced in Consul 0.6.0, and ACL behavior remained unchanged through version 0.6.3, but was then changed to allow better management of the prepared query namespace.
These differences are outlined in the table below:
Operation | Version <= 0.6.3 | Version > 0.6.3 |
---|---|---|
Create static query without Name | The ACL Token used to create the prepared query is checked to make sure it can access the service being queried. This token is captured as the Token to use when executing the prepared query. | No ACL policies are used as long as no Name is defined. No Token is captured by default unless specifically supplied by the client when creating the query. |
Create static query with Name | The ACL Token used to create the prepared query is checked to make sure it can access the service being queried. This token is captured as the Token to use when executing the prepared query. | The client token's query ACL policy is used to determine if the client is allowed to register a query for the given Name . No Token is captured by default unless specifically supplied by the client when creating the query. |
Manage static query without Name | The ACL Token used to create the query, or a management token must be supplied in order to perform these operations. | Any client with the ID of the query can perform these operations. |
Manage static query with a Name | The ACL token used to create the query, or a management token must be supplied in order to perform these operations. | Similar to create, the client token's query ACL policy is used to determine if these operations are allowed. |
List queries | A management token is required to list any queries. | The client token's query ACL policy is used to determine which queries they can see. Only management tokens can see prepared queries without Name . |
Execute query | Since a Token is always captured when a query is created, that is used to check access to the service being queried. Any token supplied by the client is ignored. | The captured token, client's token, or anonymous token is used to filter the results, as described above. |
Service Rules
The service
policy controls service-level registration and read access to the Catalog API
and service discovery with the Health API.
Service rules look like this:
service "" {
policy = "read"
}
service "app" {
policy = "write"
}
service "admin" {
policy = "deny"
}
Service rules are keyed by the service name prefix they apply to, using the longest prefix match rule. In the example above, the rules allow read-only access to any service name with the empty prefix, allow read-write access to any service name that starts with "app", and deny all access to any service name that starts with "admin".
Consul's DNS interface is affected by restrictions on service rules. If the
acl_token
used by the agent does not have "read" access to a
given service, then the DNS interface will return no records when queried for it.
When reading from the catalog or retrieving information from the health endpoints, service rules are used to filter the results of the query.
Service rules come into play when using the Agent API to register services or checks. The agent will check tokens locally as a service or check is registered, and Consul also performs periodic anti-entropy syncs, which may require an ACL token to complete. To accommodate this, Consul provides two methods of configuring ACL tokens to use for registration events:
- Using the acl_token configuration directive. This allows a single token to be configured globally and used during all service and check registration operations.
- Providing an ACL token with service and check definitions at registration
time. This allows for greater flexibility and enables the use of multiple
tokens on the same agent. Examples of what this looks like are available for
both services and
checks. Tokens may also be passed to the HTTP
API for operations that require them. Note: all tokens
passed to an agent are persisted on local disk to allow recovery from
restarts. See
-data-dir
flag documentation for notes on securing access.
In addition to ACLs, in Consul 0.9.0 and later, the agent must be configured with
enable_script_checks
or
enable_local_script_checks
set to true
in order to enable script checks.
Session Rules
The session
policy controls access to Session API operations.
Session rules look like this:
session "" {
policy = "read"
}
session "app" {
policy = "write"
}
session "admin" {
policy = "deny"
}
Session rules are keyed by the node name prefix they apply to, using the longest prefix match rule. In the example above, the rules allow read-only access to sessions on node name with the empty prefix, allow creating sessions on any node name that starts with "app", and deny all access to any sessions on a node name that starts with "admin".
Advanced Topics
Outages and ACL Replication
The Consul ACL system is designed with flexible rules to accommodate for an outage
of the acl_datacenter
or networking
issues preventing access to it. In this case, it may be impossible for
agents in non-authoritative datacenters to resolve tokens. Consul provides
a number of configurable acl_down_policy
choices to tune behavior. It is possible to deny or permit all actions or to ignore
cache TTLs and enter a fail-safe mode. The default is to ignore cache TTLs
for any previously resolved tokens and to deny any uncached tokens.
Consul 0.7 added an ACL Replication capability that can allow non-authoritative
datacenter agents to resolve even uncached tokens. This is enabled by setting an
acl_replication_token
in the
configuration on the servers in the non-authoritative datacenters. In Consul
0.9.1 and later you can enable ACL replication using
enable_acl_replication
and
then set the token later using the
agent token API on each server. This can
also be used to rotate the token without restarting the Consul servers.
With replication enabled, the servers will maintain a replica of the authoritative datacenter's full set of ACLs on the non-authoritative servers. The ACL replication token needs to be a valid ACL token with management privileges, it can also be the same as the master ACL token.
Replication occurs with a background process that looks for new ACLs approximately every 30 seconds. Replicated changes are written at a rate that's throttled to 100 updates/second, so it may take several minutes to perform the initial sync of a large set of ACLs.
If there's a partition or other outage affecting the authoritative datacenter,
and the acl_down_policy
is set to "extend-cache", tokens will be resolved during the outage using the
replicated set of ACLs. An ACL replication status
endpoint is available to monitor the health of the replication process.
Also note that in recent versions of Consul (greater than 1.2.0), using
acl_down_policy = "async-cache"
refreshes token asynchronously when an ACL is
already cached and is expired while similar semantics than "extend-cache".
It allows to avoid having issues when connectivity with the authoritative is not completely
broken, but very slow.
Locally-resolved ACLs will be cached using the acl_ttl
setting of the non-authoritative datacenter, so these entries may persist in the
cache for up to the TTL, even after the authoritative datacenter comes back online.
ACL replication can also be used to migrate ACLs from one datacenter to another using a process like this:
- Enable ACL replication in all datacenters to allow continuation of service during the migration, and to populate the target datacenter. Verify replication is healthy and caught up to the current ACL index in the target datacenter using the ACL replication status endpoint.
- Turn down the old authoritative datacenter servers.
- Rolling restart the agents in the target datacenter and change the
acl_datacenter
servers to itself. This will automatically turn off replication and will enable the datacenter to start acting as the authoritative datacenter, using its replicated ACLs from before. - Rolling restart the agents in other datacenters and change their
acl_datacenter
configuration to the target datacenter.
Complete ACL Coverage in Consul 0.8
Consul 0.8 added many more ACL policy types and brought ACL enforcement to Consul
agents for the first time. To ease the transition to Consul 0.8 for existing ACL
users, there's a configuration option to disable these new features. To disable
support for these new ACLs, set the
acl_enforce_version_8
configuration
option to false
on Consul clients and servers.
Here's a summary of the new features:
- Agents now check
node
andservice
ACL policies for catalog-related operations in/v1/agent
endpoints, such as service and check registration and health check updates. - Agents enforce a new
agent
ACL policy for utility operations in/v1/agent
endpoints, such as joins and leaves. - A new
node
ACL policy is enforced throughout Consul, providing a mechanism to restrict registration and discovery of nodes by name. This also applies to service discovery, so provides an additional dimension for controlling access to services. - A new
session
ACL policy controls the ability to create session objects by node name. - Anonymous prepared queries (non-templates without a
Name
) now require a valid session, which ties their creation to the newsession
ACL policy. - The existing
event
ACL policy has been applied to the/v1/event/list
endpoint.
Two new configuration options are used once version 8 ACLs are enabled:
acl_agent_master_token
is used as a special access token that hasagent
ACL policywrite
privileges on each agent where it is configured, as well asnode
ACL policyread
privileges for all nodes. This token should only be used by operators during outages when Consul servers aren't available to resolve ACL tokens. Applications should use regular ACL tokens during normal operation.acl_agent_token
is used internally by Consul agents to perform operations to the service catalog when registering themselves or sending network coordinates to the servers. This token must at least havenode
ACL policywrite
access to the node name it will register as in order to register any node-level information like metadata or tagged addresses.
Since clients now resolve ACLs locally, the acl_down_policy
now applies to Consul clients as well as Consul servers. This will determine what the
client will do in the event that the servers are down.
Consul clients must have acl_datacenter
configured
in order to enable agent-level ACL features. If this is set, the agents will contact the Consul
servers to determine if ACLs are enabled at the cluster level. If they detect that ACLs are not
enabled, they will check at most every 2 minutes to see if they have become enabled, and will
start enforcing ACLs automatically. If an agent has an acl_datacenter
defined, operators will
need to use the acl_agent_master_token
to
perform agent-level operations if the Consul servers aren't present (such as for a manual join
to the cluster), unless the acl_down_policy
on the
agent is set to "allow".
Non-server agents do not need to have the
acl_master_token
configured; it is not
used by agents in any way.